CASE REPORT

Intermittent hyperammonemic encephalopathy after ureterosigmoidostomy: spontaneous onset in the absence of hepatic failure

Wolfgang Jäger¹, Anne-Odette Viertmann², Claudia Janßen¹, Frank Birklein², Joachim W. Thüroff¹, Raimund Stein¹

¹Department of Urology, Johannes Gutenberg University, Mainz, Germany ²Department of Neurology, Johannes Gutenberg University, Mainz, Germany

Citation: Jäger W, Viertmann A-O, Janßen C, Birklein F, Thüroff J, Raimund R. Intermittent hyperammonemic encephalopathy after ureterosigmoidostomy: spontaneous onset in the absence of hepatic failure. Cent European J Urol. 2015; 68: 121-124.

Article history

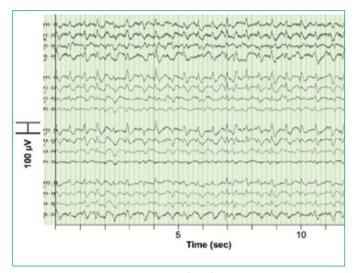
Submitted: Aug. 27, 2014 Accepted: Nov. 23, 2014 Published on-line: March 13, 2015

Corresponding author

Wolfgang Jäger Department of Urology University Medical Center Langenbeckstraße 1 55131 Mainz, Germany phone: +49 6131 170 wolf.jaeger@gmx.de Intermittent hyperammonemic encephalopathy after ureterosigmoidostomy is a rare, but if unrecognized, potentially lethal condition. Ureterosigmoidostomy was performed in a male patient with bladder extrophy. After 35 years, he developed hyperammonemic encephalopathy. Diagnostic procedures did not reveal hepatic nor metabolic disorders. Despite administration of preventive medical treatment, several episodes recurred. A durable prevention was finally achieved by conversion into an ileal conduit.

Intermittent hyperammonemic encephalopathy can occur decades after ureterosigmoidostomy. In the case of absence of metabolic disorders and resistance to medical treatment, conversion into a urinary diversion using an ileal segment constitutes an effective *ultima ratio*.

Key Words: bladder extrophy \leftrightarrow urinary diversion \leftrightarrow ureterosigmoidostomy \leftrightarrow complications \leftrightarrow hyperammonemic encephalopathy


CASE REPORT

Primary ureterosigmoidostomy for bladder extrophy was performed in a 23 year old male patient. Osteoporosis developed two decades later and was treated successfully with bisphosphonates. Periodically, asymptomatic subclinical acidosis was treated with oral sodium/potassium citrate and bicarbonate. Otherwise, laboratory and clinical examinations during continuous follow-ups at our department were unremarkable.

However, 35 years after urinary diversion, the patient experienced recurrent episodes of disorientation, altered consciousness and epileptic seizures which led to repeated hospital admissions. Extended

interdisciplinary examinations detected only a protein S deficiency. Subsequently, the patient received phenprocoumon for anticoagulation and prophylaxis of thromboembolic events.

Ten months later, he was again referred to the emergency department of our medical centre for severe deterioration of his mental status. The electroencephalogram (EEG) examination showed triphasic waves reflecting a non-convulsive *status epilepticus* (Figure 1), which was successfully treated by intravenous administration of phenytoin. The patient additionally received valproic acid (1600 mg daily) for long-term medication. Extended laboratory examinations were subsequently performed and revealed a hyperammonemic hyperchloremic metabolic acidosis (max. ammonia $305 \,\mu$ mol/l, chloride 125 mmol/l; Figure 2). Despite undergoing various diagnostic procedures, neither pre-existing acute or chronic

Figure 1. Electroencephalogram (EEG). Triphasic waves indicate an acute non-convulsive status epilepticus triggered by hyperammonemic encephalopathy.

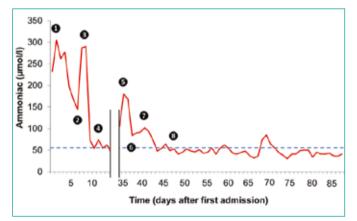


Figure 2. Serum levels of ammonia over time. Ammonia serum level high above upper reference point at the first admission to the emergency department [1]. Administration of lactulose, paromomycin and L-carnithin only temporarily induces a significant decrease [2, 3]. After modification of the antiepileptic treatment (replacement of valproic acid by levetiracetam), ammonia levels declined to normal values in concordance with clinical symptoms [4]. Three weeks later, a recurrent episode of elevated ammonia serum levels with clinical symptoms under ongoing medical treatment [5]. Decrease of the elevated serum level 48 hours after bilateral insertion of percutaneous nephrostomies [6]. De novo increase of ammonia with neurological symptoms after clamp of nephrostomies [7]. Normal serum levels of ammonia over long-term follow-up [8]. The upper reference point of serum ammonia (<55 μ mol/l) indicated by the dashed line.

liver failures nor congenital or acquired metabolic disorders were detected. Ultrasonic examination of the urinary tract excluded hydronephrosis or sigmoid distension. Treatment of the hyperammonemic hyperchloridemia with lactulose, paromomycin and L- carnitine decreased the ammonia serum level only temporarily. After replacing valproic acid with levetiracetam (3000 mg daily) for antiepileptic treatment, the ammonia levels declined to standard values (Figure 2).

Despite ongoing antiepileptic medication, another status epilepticus occurred three weeks later, again related to hyperammonia. In default of other possible etiologies, a bacterial ureolysis in the bowel was considered although the urinary tract and sigmoid colon did not show any signs of restricted urinary drainage. To verify this hypothesis, bilateral percutaneous nephrostomies were inserted (Figure 3) and 48 hours later, the elevated serum levels of ammonia and chloride indeed decreased to the normal range. The psychomotor symptoms (drowsiness, disorientation) normalized in concordance with the laboratory findings. Tentative clamping of nephrostomies resulted in the recurrence of hyperammonemia and psychomotor symptoms.

Figure 3. Antegrade pyelography. Contrast study after insertion of nephrostomies testifies absence of impaired upper tract drainage and retention of urine in the sigmoid colon.

Subsequently, the patient agreed to a conversion of the ureterosigmoidostomy into an ileal conduit, despite being previously satisfied with the ureterosigmoidostomy. With the exception of a postoperative subsegmental pulmonary embolism (pre-existing protein S deficiency), the patient did not suffer from further complications. Continuous clinical and laboratory monitoring was performed postoperatively and indicated normal serum levels of ammonia, as well as normal hepatic and renal function. Over the 31 months since the procedure, the patient has not presented with any further episodes of hyperammonemia, epileptic seizures or encephalopathic symptoms. Antiepileptic medication was stopped.

DISCUSSION

Ureterosigmoidostomy was first performed by John Simon in 1851 for a patient presenting with bladder extrophy [1]. This form of continent urinary diversion and its modification – the sigma-rectum pouch – are still options for primary or secondary urinary diversion in patients who are not eligible for primary bladder reconstruction [2, 3, 4].

Episodes of hyperammonemic encephalopathy after ureterosigmoidostomy are extremely rare, with only a few cases reported [5-14]. This severe neurological disorder is caused by elevated serum levels of ammonia in the post-hepatic blood circulation. After passage of the blood brain barrier, ammonia accumulates in the astrocytes where it disturbs neuronal function. The accompanying symptoms consist of somnolence, seizures and behavioral alterations [15]. In the worst case scenario, hyperammonemia can be lethal [15]. In ureterosigmoidostomy, elevated serum levels of ammonia in the portal vein can be caused by the exposure of the colon to urine [16]. Specific bacterial colonization in the colon (e.g. Proteus mirabilis) may cause fermentation of uric acid to ammonia and subsequent spill over into the blood stream. However, a reduced metabolic capacity of the liver (due to acute or chronic diseases) or portocaval shunts are generally required for pathological serum levels of ammonia in post-hepatic circulation [17]. As in the presented case, treatment with valproic acid can lower carnitine in the urea cycle and thus exacerbate hyperammonia [13] (Figure 2). Episodes of hyperammonemic encephalopathy after

ureterosigmoidostomy without the presence of concomitant hepatic or metabolic failure (deficiencies of urea-cycle enzymes) are rare [7, 9-11], with only five cases reported in literature. Two of these cases had a history of previous alcohol abuse [7, 9] and the other two suffered from congenital muscular atrophy, which may also predispose to hyperammonemia [11]. The present report is the second with hyperammonic encephalopathy after ureterosigmoidostomy in the absence of additional pre-existing metabolic pre-disposition (hyperammonemia persisted after stopping treatment with valproic acid). During 31 months of follow-up, all relevant laboratory values (ammonia, chloride, natrium, base excess) were monitored at least bi-weekly and all remained in the normal range.

The exact reason for the long lag after urinary diversion until presentation of hyperammonemia remains unclear. The metabolic disorder was presumably triggered by bacterial overgrowth (bacteriogenic ureapoesis). However, it seems evident that the absorption of ammonia in the sigmoid exceeded the physiologic metabolic capacity of the liver despite the absence of hepatic or metabolic co-morbidities. Antiepileptic treatment with valproic acid, though initiated in order to treat a symptom of the hyperammonic hypercloridemia, probably additionally increased the ammonia serum level (Figure 2).

In conclusion, hyperammonemic encephalopathy after ureterosigmoidostomy is an iatrogenic problem which must be considered in the differential diagnosis of unclear mental disorders, altered consciousness and seizures. In cases of persistence and recurrence of symptoms despite medical therapy, a transient low-pressure urinary diversion which decreases bowel contact with urine should be established by bilateral insertion of nephrostomies (in our case) or by placement of a rectal tube as an emergency treatment [5]. Furthermore, a possible success of a surgical conversion into a permanently incontinent urinary diversion can be easily evaluated preoperatively. Such an irreversible surgical approach should only be performed after definitive exclusion of all other possible etiologies of hyperammonemic encephalopathy [7, 10, 11]. From both literature and our experience, this approach seems an appropriate and successful strategy in preventing further episodes of hyperammonemic encephalopathy.

References

- 1. Simon, J. Ectopia vesica (Absence of the anterior walls of the bladder and pubic abdominal parities); operation for directing the orifices of the ureter into the rectum; temporary success; subsequent death; autopsy. Lancet. 1852; 2: 568-570.
- 2. Hautmann RE, Abol-Enein H, Davidsson T, Gudjonsson S, Hautmann SH, Holm HV, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: urinary diversion. Eur Urol. 2013; 63: 67-80.
- 3. Pahernik S, Beetz R, Schede J, Stein R, Thüroff JW. Rectosigmoid pouch (Mainz Pouch II) in children. J Urol. 2006; 175: 284-287.
- 4. Stein R, Fisch M, Black P, Hohenfellner R. Strategies for reconstruction after unsuccessful or unsatisfactory primary treatment of patients with bladder extrophy or incontinent epispadias [see comments]. J Urol. 1999; 161: 1934-1941.
- 5. Mounger EJ, Branson AD. Ammonia encephalopathy secondary to ureterosigmoidostomy: a case report. J Urol. 1972; 108: 411-412.
- Mortensen E, Lyng G, Juhl E, Egense J, 6 Schwartz M. Ammonia-induced coma

after ureterosigmoidostomy. Lancet. 1972; 1: 1024.

- 7. Kaufman JJ. Ammoniagenic coma following ureterosigmoidostomy. J Urol. 1984; 131: 743-745.
- 8. Edwards RH. Hyperammonemic encephalopathy related to ureterosigmoidostomy. Arch Neurol. 1984; 41: 1211-1212.
- 9. Gilbert GJ. Acute ammonia intoxication 37 years after ureterosigmoidostomy. South Med J. 1988; 81: 1443-1445.
- 10. Cascino GD, Jensen JM, Nelson LA, Schutta HS. Periodic hyperammonemic encephalopathy associated with a ureterosigmoidostomy. Mayo Clin Proc. 1989; 64: 653-656.
- 11. Kaveggia FF, Thompson JS, Schafer EC, Fischer JL, Taylor RJ. Hyperammonemic encephalopathy in urinary diversion with urea-splitting urinary tract infection. Arch Intern Med. 1990; 150: 2389-2392.
- 12. Donnard G, Dumotier J, Le Dantec P, Suppini A, Quinot JF. Hyperammonemia encephalopathy after ureterosigmoidostomy. Cah Anesthesiol. 1996; 44: 149-151.

- 13. Schwarz S, Georgiadis D, Schwab S, Gehlen F, Mayatepek E, Zoubaa S. Fulminant progression of hyperammonaemic encephalopathy after treatment with valproate in a patient with ureterosigmoidostomy. J Neurol Neurosurg Psychiatry. 2002; 73:90-91.
- 14. Ohnishi S, Yoshida T, Makiyama H, Usui K, Kudo M, Kobayashi T, et al. Hyperammonemic encephalopathy in a patient with ureterosigmoidostomy and acute hepatitis: a specific case of fulminant hepatic failure. Dig Dis Sci. 2003; 48: 821-823.
- 15. Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol. 2010; 91: 200-219.
- 16. Koch MO, McDougal WS, Thompson CO. Mechanisms of solute transport following urinary diversion through intestinal segments: an experimental study with rats. J Urol. 1991; 146: 1390-1394.
- 17. Poh Z, Chang PE. A current review of the diagnostic and treatment strategies of hepatic encephalopathy. Int J Hepatol. 2012; doi: 10.1155/2012/ 480309.

Index of authors

- A Marek Adamek 102 Alp Ozgur Akdemir 86 Binhan Kagan Aktas 51, 60, 86 Stefan Aufderklamm 18
- **B** Marek Babjuk 15 Huseyin Badem 91 Mevlana Derya Balbay 18 Umit Bayol 30 Elham Behzadi 99 Payam Behzadi 99 Simone Bier 18 Frank Birklein 121 Mariusz Blewniewski 68 Johannes Böttge 18 Suhevla Uvar Bozkurt 72 Bogdan Braticevici 9 Antonín Brisuda 9 Suleyman Bulut 51, 86 Matthew I. Bury 115
- C Ebru Cakır 30 Ozgur Cakmak 30 Abdullah Erdem Canda 18 Jessica T. Casev 61 Victor Cauni 9 Mucahit Cavis 91 Sonia Chabbra 37 Ersin Cimentepe 91
- D Jesús Javier de la Peña Barthel 24

Aslan Demir 72 Rauf Taner Divrik 30 Caroline Dong 61 Tomasz Drewa 5, 57, 109

- E Akif Ersoy Erkmen 51, 86
- F Pamela Portella Fontana 24 Natalie J. Fuller 115
- **G** Georgios Gakis 18 Cevdet Serkan Gokkaya 51, 60, 86 M Shivani Malik 37 Ángel Tabernero Gómez 24 Alyssa Greiman 61 Viacheslav Grygorenko 9
- H Omar Halalsheh 18 Jan Hrbáček 95
- Yalcin Nazmi İlker 72 Т Ilkay Bekir Incebay 91
- J Wolfgang Jäger 121 Claudia Janßen 121 Kajetan Juszczak 57
- K Mehmet Karabakan 51,86 Omer Faruk Karatas 91 Atif Katib 79 Stephanie J. Kielb 61 Ziya Kirkali 45

Rafał Kliś 68 Tomasz Kloskowski 109 Ulku Kucuk 30 Santosh Kumar 37

- L Ramesh Lamba 37 Jesús Cisneros Ledo 24 Martyn–Zenovii Lesnyak 9 Janusz Lisiński 9 Joceline S. Liu 61
- Michał Markowski 68 Ali Memis 51, 86 Johannes Mischinger 18 Shubhra Mukherjee 61
- O Cuneyt Ozden 51 Esra Ozkara 45
- P Emel Ebru Pala 30 Woiciech Perdzvński 102 Cristian Persu 9, 17 Marta Pokrywczyńska 109 Sławomir Poletajew 9, 17
- R Piotr Radziszewski 9 Praveen Rana 37 Reza Ranjbar 99 Steffen Rausch 18 Kacper Renk 9

Juan Gómez Rivas 24 Waldemar Różański 68

- S Leslie Cuello Sánchez 24 Monika Sangwan 37 Christian Schwentner 18 Jesús Díez Sebastián 24 Rajeev Sen 37 Ozlem Sezer 30 Arun K. Sharma 115 Allen Sim 18 Sonia Singh 37 Sunita Singh 37 Raimund Stein 121 Arnulf Stenzl 18
- T Joachim W. Thüroff 121 Tilman Todenhöfer 18 Polat Türker 72 Emre Tuzel 45
- U Dogan Unal 91
- **V** Anne-Odette Viertmann 121
- W Linnea Wethekam 115
- Y Sergio Alonso y Gregorio 24 Mehmet Erol Yildirim 91 Kutsal Yorukoglu 45