

EDITORIAL COMMENT

Artificial intelligence in robotic urologic surgery: bridging augmented reality and surgical autonomy

Rafał B. Drobot^{1,2}

¹Department of Urology and Urological Oncology, Multidisciplinary Hospital in Warsaw-Miedzylesie, Warsaw, Poland

²Urology Department, Institute of Medical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Poland

Citation: Drobot RB. Artificial intelligence in robotic urologic surgery: bridging augmented reality and surgical autonomy. Cent European J Urol. 2026; doi: 10.5173/ceju.2025.0341

Article history

Submitted: Dec. 26, 2025

Accepted: Dec. 26, 2025

Published online: Feb. 16, 2026

Corresponding author

Rafał B. Drobot

Urology Department, Institute of Medical Sciences,
Faculty of Medicine, Collegium Medicum,
Cardinal Stefan Wyszyński University in Warsaw
Bursztynowa 2 St.,
04-749 Warsaw, Poland
r.drobot@uksw.edu.pl

Key Words: robotic surgical procedures ◊ artificial intelligence ◊ machine learning ◊ augmented reality
◊ surgery ◊ computer-assisted ◊ prostatectomy

INTRODUCTION

Robot-assisted urologic surgery is intrinsically data-rich: each procedure yields high-definition video, instrument kinematics, energy-use logs and, increasingly, preoperative multiparametric imaging. Artificial intelligence (AI) can convert these multimodal streams into decision support and standardized, auditable outputs. The key translational question is no longer whether models can detect anatomy, but whether they improve patient-relevant outcomes without degrading situational awareness, safety, or equity. In urology, where functional preservation hinges on millimetric plane selection, evaluation must treat AI as an intervention within a socio-technical system rather than as a stand-alone algorithm.

CLINICAL-GRADE INTRAOPERATIVE GUIDANCE: WHEN AUGMENTATION CHANGES MARGINS

The strongest clinical signal comes from the RIDERS randomized trial evaluating three-dimensional AI-driven augmented reality (AR) guidance during nerve-sparing robot-assisted radical prostatec-

tomy (RARP) in men with extracapsular extension or bulging on preoperative magnetic resonance imaging (MRI) [1]. The intervention operationalized a concrete decision point: margin risk adjacent to the neurovascular bundle. Rather than presenting a passive overlay, the system coupled patient-specific 3D models with targeted biopsy guidance and linked this workflow to oncologic endpoints. The trial therefore moves the field beyond feasibility narratives by showing that AI-enabled AR, when integrated into a defined intraoperative action, can plausibly alter outcomes that matter to patients. The same study also illustrates why “overlay accuracy” is an incomplete surrogate. Generalizability will likely fail at the system boundary: MRI acquisition variability, segmentation fidelity, registration drift as tissue deforms, and surgeon tolerance for false alerts when the suggested plane conflicts with visual cues. Future trials should report calibration and failure-mode metrics alongside primary endpoints, including drift distributions, overlay loss events, interruption frequency, and structured audit logs of surgeon overrides. Without these, it is difficult to distinguish a reproducible tool from a center-specific workflow artifact.

NAVIGATION AS STEP STANDARDIZATION IN PARTIAL NEPHRECTOMY

Beyond the prostate, a 2025 clinical series suggests that AI-enabled AR can be deployed to standardize technically variable steps. In minimally invasive partial nephrectomy, an AI auto-matching approach aligned a CT-derived 3D model with the operative view to create real-time navigation of the renal hilum [2]. In 105 patients (46 with navigation), renal hilum exposure time was shorter in the AR group, particularly for complex hilar anatomy, while operative time, warm ischemia time, blood loss, and complications were comparable. Although nonrandomized, this design frames a pragmatic endpoint for AR: reducing time and variability in high-risk dissection steps rather than promising universally faster surgery. Such step-level endpoints are attractive because they are proximal to intended use and less confounded by oncologic heterogeneity.

OPERATIVE INTELLIGENCE WITHOUT TISSUE CONTACT: FROM VIDEO TO DOCUMENTATION

If intraoperative guidance is the most visible application, the most scalable near-term benefit may be post-operative. Automated AI analysis of surgical video has been shown to generate operative reports with fewer discrepancies than surgeon-authored documentation [3]. For robotic urology, this reduces the documentation burden without introducing intraoperative risk, improves traceability via timestamped accounts derived from the primary data source, and enables scalable, structured case review. Critically, it also lays the groundwork for multicenter learning: standardized reports can be paired with pathology and outcomes to create higher-quality labels than routine narrative notes. Translation in this domain remains nontrivial. Video-to-text systems require validation against adjudicated ground truth, clear governance for medicolegal attribution when discrepancies occur, and privacy-preserving storage when video shifts from “teaching file” to clinical record artifact. Nonetheless, compared with intraoperative actuation, the benefit-to-risk ratio is favorable and well suited to prospective implementation studies.

FROM SHARED AUTONOMY TO STEP-LEVEL AUTONOMY: RELEVANCE OF THE 2025 MILESTONES

Autonomy is best viewed as a spectrum. Step-level autonomous soft-tissue surgery demonstrated

in 2025 using a hierarchical, language-conditioned imitation learning framework indicates that long-horizon action sequences are becoming technically feasible under controlled conditions [4]. For urologic robotics, the translational message is not imminent autonomous prostatectomy; it is the need to define bounded autonomy claims (e.g., camera control, retractors, needle driving constraints) and to specify human factor endpoints. Trust calibration, cognitive load, interruption handling, and conservative stopping rules will likely determine clinical safety more than raw task success.

DIGITAL TWINS AS THE CONNECTIVE TISSUE BETWEEN PLANNING AND EXECUTION

A parallel 2025 theme is the maturation of “digital twins” in uro-oncology: patient-specific computational models derived from multimodal data and updated over time [5, 6]. For robotic surgery, digital twins provide a conceptual bridge between pre-operative planning and intraoperative execution. In partial nephrectomy, they may enable patient-specific simulation of ischemia–parenchyma trade-offs; in RARP, they may formalize margin–nerve-sparing trade-offs using imaging and pathology as constraints. The challenge is that a digital twin is only as reliable as its update mechanism; without standards for data provenance, uncertainty quantification, and outcome-linked validation, digital twins risk becoming persuasive visualizations rather than decision-grade tools.

REGULATION AND TRIAL DESIGN: CLOSING THE LAST MILE

As AI shifts from visualization to decision-affecting software, it becomes a continuously evolving medical device. The FDA’s 2025 guidance on predetermined change control plans formalizes how bounded post-market model updates can be pre-authorized while preserving traceability, performance monitoring, and risk control [7]. In Europe, MDCG guidance clarifies the interplay between the Medical Devices Regulation and the AI Act, reinforcing expectations for transparency, data governance, and cybersecurity for high-risk medical-device AI [8]. These frameworks matter for urologic robotics because iterative model updates are inevitable once systems are trained on local video and imaging distributions. Prospective validation studies and randomized trials are already registered to test AI-driven 3D models and AR guidance in urologic robotics [9, 10]. To be clinically actionable, they should pair patient-

Table 1. Evidence map for AI tools in robotic urologic surgery: representative clinical use cases, 2025 evidence signals, and priority gaps for translation

Workflow point	AI capability	Representative 2025 evidence	Translational priority (gap to close next)
Preoperative planning and modeling	Patient-specific 3D reconstruction; emerging digital twin concepts	Uro-oncology digital twin frameworks integrating multimodal data [5, 6]	Standardize data models and validation: link model outputs to intraoperative decisions and downstream outcomes, not only imaging fidelity
Intraoperative decision support in RARP	AI-driven 3D augmented reality; targeted biopsy guidance; nerve-sparing plane support	Prospective randomized evidence for AI-driven 3D AR guidance in nerve-sparing RARP [1]; ongoing randomized evaluation [9]	Report calibration and failure modes (drift, overlay loss, overrides); multicenter replication across imaging protocols and surgeons; measure cognitive load and interruptions
Intraoperative navigation in partial nephrectomy	AI auto-matching of CT-derived 3D models to operative view for hilar dissection navigation	Clinical series showing reduced hilar exposure time with AI-based AR navigation [2]; prospective validation of AI 3D kidney model underway [10]	Robust registration under deformation; prespecified renal function endpoints; external validity across platforms and case complexity
Perioperative documentation and quality assurance	Video-to-text operative reporting; automated event capture from surgical video	Automated AI video analysis produced operative reports with fewer discrepancies than surgeon-authored reports [3]	Adjudicated ground truth; medicolegal attribution for discrepancies; privacy-preserving video storage; integration into EHR workflows
Shared autonomy and safety-enveloped automation	Step-level autonomous actions under human supervision; constrained task automation	Hierarchical, language-conditioned imitation learning enabled step-level autonomous soft-tissue surgery in controlled settings [4]	Define autonomy claims and safety envelopes; staged evaluation (simulation → cadaver/animal → first-in-human); conservative stopping rules and audit logs
Lifecycle governance and regulation	Update control plans; post-market monitoring; transparency and cybersecurity expectations	FDA guidance on predetermined change control plans for AI-enabled device software functions [7]; EU MDR/AI Act interplay FAQ [8]	Traceable updates, monitoring for dataset shift, cybersecurity and human oversight; vendor-neutral data export to enable independent evaluation

AI – artificial intelligence; AR – augmented reality; CT – computed tomography; EHR – electronic health record; EU – European Union; FDA – Food and Drug Administration; MDR – Medical Devices Regulation; RARP – robot-assisted radical prostatectomy

centered endpoints (margins, renal function preservation, complications, recovery trajectories) with implementation endpoints (workflow disruption, failure modes, and override frequency). Table 1 summarizes where current evidence is strongest and where the next trials must focus to deliver a generalizable benefit.

In summary, the most credible recent advances in AI for robotic urologic surgery share a common structure: a specific decision point, measurable clinical outcomes, and explicit accounting of failure modes. The next gains will come less from larger models and

more from multicenter validation, interoperable data capture, and governance that treats AI as a monitored device rather than a static software feature.

CONFLICTS OF INTEREST

The author declares no conflict of interest.

FUNDING

This research received no external funding.

ETHICS APPROVAL STATEMENT

The ethical approval was not required.

References

1. Porpiglia F, Checcucci E, Volpi G, et al. Artificial intelligence 3D augmented reality-guided robotic prostatectomy versus cognitive MRI intervention: results of the prospective randomized RIDERS trial. *Eur Urol*. 2025; doi: 10.1016/j.eururo.2025.09.4172.
2. Shi X, Yang B, Guo F, et al. Artificial intelligence based augmented reality navigation in minimally invasive partial nephrectomy. *Urology*. 2025; 199: 20-26.
3. Khanna A, Wolf T, Frank I, et al. Enhancing accuracy of operative reports with automated artificial intelligence analysis of surgical video. *J Am Coll Surg*. 2025; 240: 739-746.
4. Kim JW, Chen JT, Hansen P, et al. SRT-H: a hierarchical framework for autonomous surgery via language-conditioned imitation learning. *Sci Robot*. 2025; 10: eadts254.
5. Görtz M, Brandl C, Nitschke A, et al. Digital twins for personalized treatment in uro-oncology in the era of artificial intelligence. *Nat Rev Urol*. 2026; 23: 29-39.
6. Checcucci E, Oing C, Amparore D, Porpiglia F, Rescigno P. Digital twins in urological oncology: precise treatment planning via complex modeling. *Eur Urol Oncol*. 2025; 8: 1-4.
7. U.S. Food and Drug Administration. Marketing submission recommendations for a predetermined change control plan for artificial intelligence-enabled device software functions. Guidance for industry and Food and Drug Administration staff. August 2025. Available at: <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/>

marketing-submission-recommendations-predetermined-change-control-plan-artificial-intelligence.

8. Artificial Intelligence Board (AIB), Medical Device Coordination Group (MDCG). AIB 2025-1 / MDCG 2025-6: FAQ on interplay between the Medical Devices Regulation (MDR) & In vitro Diagnostic Medical Devices Regulation (IVDR) and the Artificial Intelligence

Act (AIA). June 2025. Available at: https://health.ec.europa.eu/document/download/b78a17d7-e3cd-4943-851d-e02a2f22bbb4_en?filename=mdcg_2025-6_en.pdf.

9. ClinicalTrials.gov. Impact of augmented reality during robot-assisted radical prostatectomy. Identifier NCT06059859. Last update posted 2025 Aug 12.

Available at: <https://clinicaltrials.gov/study/NCT06059859>.

10. ClinicalTrials.gov. Using 3D kidney model based on artificial intelligence to assist partial nephrectomy: a prospective validation study. Identifier NCT07020169. Last update posted 2025 Jun 13. Available at: <https://clinicaltrials.gov/study/NCT07020169>. ■