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approach (LPN), first described in 1993, has been shown to provide
functional and oncologic outcomes equivalent to those of open
surgery while offering the patient more rapid recovery times [5-8].

laparoscopy © renal cell cancer b small renal mass Nevertheless, LPN remains a difficult technique, largely because of
the challenge of intracorporeal suturing. Besides extirpative tech-
niques, ablative procedures including cryoablation, radiofrequency
ABSTRACT

To assess the current status and future perspectives of
minimal-invasive nephron-sparing surgery (NSS) includ-
ing extirpative and ablative techniques.

Minimally invasive nephron-sparing surgery for renal
tumors comprises extirpative laparoscopic partial neph-
rectomy (LPN) and ablative procedures such as cryoabla-
tion, radiofrequency ablation, as well as radiosurgery.
Minimally invasive nephron-sparing surgery modalities
offer reduced morbidity as compared with open partial
nephrectomy. Recent trials comparing laparoscopic
partial nephrectomy and open partial nephrectomy
demonstrated equivalent cancer-specific survival.
Encouraging long-term data are becoming increas-
ingly available for laparoscopic partial nephrectomy and
cryoablation. However, some concerns remain about
incomplete tumor cell kill after radiofrequency ablation.
Radiosurgery is a promising new technology, but is still
experimental. The increasing availability of robotic assis-
tance in urologic oncology also allows for novel thera-
peutic concepts such as single-port laparoscopy.

Open and laparoscopic partial nephrectomies are the
standard-of-care for treating small renal masses, with
LPN becoming the preferred option in high-volume uro-
oncology centers. Continuing research adds to the value
of ablative technologies.

INTRODUCTION

The annual incidence of renal cell carcinoma has consistently
increased over the past decades. In the US, in 2008, there were
more than 55,000 new cases, resulting in over 13,000 deaths [1, 2].
The greatest increase however, has occurred in small, localized tu-
mors, which represent up to 66% of all renal tumors [3]. The wide-
spread use of cross-sectional imaging that has consequently led to
increased incidental detection of small renal masses in asympto-
matic patients [4]. Since 2006, radical nephrectomy performed as
a laparoscopic procedure is accredited as standard procedure for
organ-limited tumors in the guidelines of the European association
of urology. However, partial nephrectomy is a valid alternative for
many small renal masses, as it provides excellent oncologic control,
while maximizing the preservation of renal parenchyma. Elective
partial nephrectomy has become an emerging standard of care for
patients with renal tumors less than 4 cm in size. The laparoscopic

ablation (RFA), and radiosurgery are completing the clinical menu
of minimally invasive nephron-sparing surgery for the small renal
mass.

Herein, we aim to give an overview about the current status
and our own experience with these minimal-invasive techniques.

PARTIAL NEPHRECTOMY

In this section, we will focus on laparoscopic and robotic partial
nephrectomy.

Laparoscopic partial nephrectomy (LPN)

LPN must duplicate the technical aspects of open nephron-
sparing surgery (NSS) to maintain its oncological principles. The
challenge is to achieve definitive margin free tumor excision in a
bloodless field under ischemia time constraints, followed by reliable
hemostatic renorrhaphy.

The first LPN was performed transperitoneally by Winfield et
al.and retroperitoneally by Gill et al. [9, 10]. The initial experience
was limited to small, peripheral, solitary, and exophytic tumors [11,
12]. These indications have been expanded to hilar and intrarenal
tumors, solitary kidneys, larger tumors (T1b and T2), and tumors in
the presence of renovascular disease [13].

Nowadays, the main contraindication to LPN is lack of surgeon
expertise with advanced laparoscopy. Robotic assistance may help
to overcome this limitation. Previous ipsilateral open surgery is also
a relative contraindication. If LPN appears too technically challeng-
ing in selected cases open partial nephrectomy remains the proce-
dure of choice.

Technical aspects

Retroperitoneal versus transperitoneal approach

We generally favor a transperitoneal approach. Once the kid-
ney is completely mobilized most tumor locations - even posterior
masses - are easily accessible. The retroperitoneal approach is espe-
cially useful for polar lesions allowing for a more favorable suturing
angle. Generally, limited space is considered to be the main limita-
tion of the retroperitoneal approach. Hence, surgeon preference is
probably the most important factor selecting the approach [14].

Surgical strategy: Four ports are usually required for right-sid-
ed lesions while three are sufficient for the left side. Intelligent port
placement and adequate exposure of the kidney and the tumor are
critical to perform an excision with negative margins. The kidney
needs to be completely mobilized so that it can be appropriately
positioned for ablation and subsequent reconstruction [15]. Before
the hilar clamp is applied one needs to be confident with the opera-
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Tab. 1. Complications of the largest series of LPN.

Vascular, .
Mean Overall . . Medical
. . Hemorrhage Urine leak Renal failure organ, .
Author No. of pts | tumor size | complications L complications
() (%) (%) pleural injury
cm (%) (C)]
(%)
Ramani et al [27] 200 29 66 (33.0) 20 (10.0) 9 (4.5%) 4(2.0) 24 (12.0)
Simmons et al [28] 200 3.0 38 (19.0) 11 (5.5) 4(2.0) 1(0.5) 18 (9.0)
Wright et al [29] 49 2.3 7 (14.3) 1(2.0) 2 (4.1) 0 0 4(8.2)
Venkatesh et al [30] 123 2.6 26 (21.1) 3(2.4) 13 (10.6) 0 0 10 (8.1)
Schiff et a [131] 66 2.2 6(9.0) 1(1.5) 2 (3.0) 0 1(1.5) 2 (3.0)
Link et al [32] 217 2.6 27 (12.4) 4(1.8) 3(1.4) 2(0.9) 0 15 (6.9)
Bollens et al [40] 39 23 12 (30.7) 1(2.5) 3(7.7) 0 0 8(20.5)
Abukora et al [33] 78 2.1 23 (29.5) 6(7.7) 5 (6.4) 0 2(2.6) 10 (12.8)
Porpiglia et al [34] 90 3.1 22 (24.4) 7(7.8) 4 (4.4) 0 0 11 (12.2)
Total 1062 2.7 227 (21.4) 54 (5.1) 45 (4.2) 7(0.7) 8(0.8) 102 (9.6)

tive strategy including the parenchymal defect and all suturing an-
gles. Most importantly, peritumoral fat is maintained en bloc over
the tumor, both for oncological reasons and to optimize atraumatic
manipulation of the mass during excision (Fig. 1). Tumor rupture
should be avoided in any case to prevent spillage. The tumor resec-
tion margin should be scored using monopolar cautery including
an adequate safety margin of healthy tissue.

Conventional laparoscopic suturing is very time consuming
[13]. Therefore innovative methods such as clipped suture lines
were introduced into clinical practice. Non-absorbable clips should
be used best for parenchymal closure (Fig. 2), resulting in perma-
nent and efficient hemostasis. Absorbable clips should be used for
the renal pelvis and for the inner parenchyma [16].

Vascular pedicle control and warm ischemia

There is no consensus about the clamping technique to be em-
ployed (artery, artery and vein, intermittent occlusion). We are oc-
cluding the artery and vein separately, using laparoscopic bulldog
clamps. Ho et al. proposes an elegant method for hilar control using
vessel loops in conjunction with Hemolock-Clips®. Warm ischemia
time (WIT) has to be limited to 30 min. If WIT exceeds 60 minutes ir-
reversible kidney damage is very likely to occur. Desai et al. found a
correlation between renal function and the amount of parenchyma
excised after LPN [17]. Lane et al. evaluated 1,049 patients under-
going either LPN or OPN and described WIT as a significant surgi-
cally modifiable predictor for postoperative renal dysfunction [18].
In contrast to traditional renal reconstruction some authors advo-
cate a more progressive strategy involving early hilar unclamping.
In this ‘early unclamping technique’, only the initial parenchymal
suture is performed with the hilum clamped while renorrhaphy it-
self and bolstering sutures are done under ongoing circulation. WIT
has been shown to be significantly lower with this technique com-
pared with conventional reconstruction (31 vs. 13.9 min, P<0.0001).
Interestingly, the incidence of postoperative hemorrhage was not
elevated [19].

Cold ischemia

Gill et al. reported the first experience of minimally invasive re-
nal cooling during LPN in 2003 [20]. After kidney mobilization and
placing in an Endocatch Il bag (US surgical, Norwalk, Connecticut,
USA), the intact hilum was clamped and the bag filled with ice slush
through a port site. Kidney temperature was kept between 5 and
19°C. Janetschek et al. used an angiocatheter to perfuse the kid-
ney with a 4°C crystalloid solution [21]. A temperature of 25°C was
achieved. We also employed this technique during LPN but cur-
rently we do not perform cooling anymore mainly for two reasons:

usually an interventional radiologist is required to place the arterial
catheter significantly exceeding overall OR-time. With increasing
expertise one is usually able to perform even complex reconstruc-
tion in less than 30 minutes. We believe that cooling will be rather
replaced by other innovative techniques such as early unclamping
or robotic assistance [17].

Hemostasis

Only hilar clamping provides a reliable method of obtaining
a bloodless field during tumor excision. Gettman et al. proposed
radiofrequency coagulation before excision of a renal mass in 10
patients [22]. Median estimated blood loss was 125 ml. Another
monopolar radiofrequency device capable of dissection, hemostasis,
and coagulation without clamping has been reported with a mean
estimated blood loss of 352 ml in 10 patients [23]. Potential disad-
vantages of coagulative devices for LPN are collateral damage to
adjacent renal vasculature and collecting system and difficulty in
distinguishing tumor from normal parenchyma. The adjunctive use
of a gelatin matrix thrombin sealant (Floseal®, Baxter Healthcare,
Deerfield, lllinois, USA) has become very popular. Its benefits were
evaluated comparing two groups of patients who underwent LPN at
the Cleveland Clinic. The Floseal® group had significantly decreased
overall and hemorrhagic complication rates as compared to the
group not using Floseal®. The relatively high price actually remains
the only limitation for the use of this effective agent in NSS [24].

We are additionally using an Argon beam coagulator as in open
surgery. This technique has been shown to improve hemostasis, ad-
ditionally we believe that the laser will also improve the oncologic
efficacy [25].

Reconstruction of the collecting system

Some surgeons still favor the insertion of a ureteral catheter
prior o LPN allowing for retrograde injection of methylene blue
to accurately identify and repair pelvicalyceal defects. However,
most laparoscopists do not routinely apply a retrograde catheter
anymore further reducing the overall operative times. As a conse-
quence of the increasing complexity of LPN WIT tends to be longer
in patients who underwent pelvicalyceal suture repair subsequently
leading to a longer hospital stay [26].

Spectrum of complications of LPN

The spectrum of complications typically involves immediate
and delayed hemorrhage, urinary leakage as well as renal failure.
In a meta-analysis including a total of 1,062 patients published by
Zimmermann the overall complication rate was 21.4%, including
postoperative hemorrhage (5.1%), urine leak (4.2%), and renal fail-
ure (0.7%). See table 1 [27-34].
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Tab. 2. Oncologic outcomes of the largest series of LPN.

. Mean tumor size Positive surgical Local recurrence
0
Author No. of patients (cm) CSS (%) i () %)
58 29 100 1.7 1.7

Mean follow-up

(mo)
Lane et al [36]
Permpongkosol et 85 24 97.6 24 17 40
al [37]
Gill et al [38] 77 27 993 1.6 14 14
Porpiglia et al [39] 34 3.2 100 29 0 16
Bollens et al [40] 39 23 100 2.6 0 15

Presence of solitary kidney and increased ischemia time were
predictors of postoperative complications [35].

Oncologic outcomes

Regarding the largest series of LPN comprising 987 patients
cancer-specific survival is between 97.6 and 100%. Positive mar-
gins were found in 1.6% to 2.9% of all cases, however recurrence
rates were less than 1.7% underlining the limited relevance of the
margin status [36-40Q]. See table 2.

Comparison of laparoscopic partial nephrectomy and open par-
tial nephrectomy

A multi-institutional study compared 1,800 patients with a sin-
gle renal tumor undergoing either LPN (n = 771) or OPN (n = 1029).
Patients who underwent OPN were older, had larger tumors, and
more solitary kidneys (P <0.001). WIT was 10 min during LPN. How-
ever, preservation of renal function was achieved in 97.9% of LPN
and 99.6% of OPN. Hospital stay and operative time were shorter in
the LPN group. Overall postoperative complications were higher in
the LPN group (18.6 vs. 13.7%), particularly hemorrhagic complica-
tions (4.2 vs. 1.6%). Positive margins for cancer were similar (1.6 vs.
19). Local (1.4 vs. 1.5%) and distant (0.9 vs. 2.1%) recurrences were
also equivalent. Cancer-specific survival at 3 years was 99.3 and
99.200, respectively [41]. Hence, LPN yields equivalent oncologic re-
sults offering reduced morbidity [12].

Robotic partial nephrectomy

In theory, robotic assistance may ameliorate the challenge of
minimally invasive renal reconstruction, thereby rendering the
technique more attractive to urologists with limited laparoscopic
experience [42]. The development of the da Vinci surgical system®
(Intuitive Surgical Corp., Sunnyvale, California, USA) offers a
unique surgical experience that allows for complex procedures to
be performed more easily by a greater number of surgeons than
the conventional laparoscopic approach. This system is well es-
tablished in urology and has been successfully utilized for several
procedures, including radical prostatectomy. The unique benefits
of robot-assisted surgery include three-dimensional visualization,
magnification, 6 degrees of freedom at the distal instrument wrist,
absence of the fulcrum effect, and the elimination of tremors.
These features decrease the technical difficulty of procedures and
have been shown to shorten the learning curve of robotic surgery.
The majority of current robotic series report a hybrid procedure,
with the initial steps of the procedure performed with standard
laparoscopic transperitoneal dissection [43-46]. Specifically, the
laparoscopic approach is typically utilized for colon mobilization,
dissection of the kidney, and exposure of the renal capsule and
hilar structures. Once the hilum is ready for clamping, the da Vinci
robot is docked, and the remainder of the procedure is performed
robotically. Operative results for robotic partial nephrectomy have
been similar to those of laparoscopic partial nephrectomy. Col-
lectively, the robotic series includes tumors with a mean size of
2.0-3.6 cm (range 0.8-6.0 cm). Mean warm ischemic times ranged

from 21 to 32 min (range 13-45 min), with mean estimated blood
loss ranging from 92 to 329 ml (range 25-500 ml), and mean
total operative times ranging from 155 to 279 min (range 87-
375 min). The average length of hospital stay ranged from 1.5 to
4.7 days (range 1-7 days) and demonstrated a downward trend
with increased experience in most series. Although robotic partial
nephrectomy is a relatively new technique, the oncologic out-
comes from the robotic series appear to parallel those reported
in the laparoscopic partial nephrectomy literature. These results,
which are comparable to most laparoscopic series, show that
robotic-assisted partial nephrectomy may indeed be an alter-
native to laparoscopic partial nephrectomy [28-48]. However, it
should be noted that the bulk of available literature consists of
non-randomized and retrospective analysis, which are subject to
bias. Prospective randomized trials will be necessary to further
validate these data.

At the time of writing, no proven advantage of RPN over LPN
has emerged, but RPN may allow wider dissemination of minimal-
invasive NSS.

Future technologies for NSS

1. Single-incision laparoscopic surgery (SILS)

Several techniques for single-incision surgery have been estab-
lished. Novel port access systems like Unix-X, R-port and Gelport
allow for laparoscopic procedures through a single umbilical inci-
sion. Unix-X was used in the group of Remzi and colleagues 2008
in colorectal cancer, and showed promising result after right hemi-
colectomy in a case report [49]. Report was established by Rane
already in 2008. Five patients underwent therapeutic laparoscopic
interventions (2 nephrectomies, one orchidopexy, one orchidecto-
my, and one ureterolithotomy). They stated that the R-port allows
laparoscopic surgery to be performed safely. Desai et al. reported
about the technical feasibility of nephrectomy using the same de-
vice. So far SILS remains experimental for NSS [50].

The group of Merchant and colleagues worked with Gelport as
single incision access. They used this system for cholecystectomy
and described the possibility to extend the use of this laparoscopic
device.

The authors also complain about the difficulties of “clashing”
instruments leading to further technical challenges of this tech-
nique.

Stein et al. propose a hybrid robot-laparoscopy technique in
nephron-sparing surgery through a single port device (Gelport).
They accessed the kidney transperitoneally, after mobilization of
the kidney they docked on the robot to excise the tumor roboti-
cally without hilar clamping using the harmonic scalpel and hem-
o-lok clips. Blood loss was 600 ml and required transfusion of 1
unit of red blood cells. Tumor size was 11 cm. They praised the
advantage of this single port system in combination with the ro-
botic approach by the increased space due to robotic assistance,
the flexibility of the instruments and the favorable assistant ac-
cess [51].
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Fig. 1. Laparoscopic view of a T1a renal tumor.

2. Natural orifice translumenal endoscopic surgery (NOTES)

This highly new innovative technique in nephron sparing surgery
has not been yet introduced into clinical routine. It is an experimental
new approach which is mainly established nowadays in the porcine
model. Haber et al. describe their experience in the porcine model
demonstrating that this new technique may be safe and feasible.
Beside an endoscopic transvaginal access in female pigs they also
reported about hybrid models of laparoscopy and robotic surgery. Es-
pecially in the robotic assisted surgery they praised the improvement
in suturing by the advances of the robotic instruments [52].

The lack of scars is currently considered to be the main advan-
tage of this approach while its overall invasiveness remains debat-
able. Still we have to keep our eye on the rapid development of
NOTES in uro-oncology.

Ablative options

Radiofrequency ablation: RFA induces thermal damage by con-
verting radiofrequency waves into heat. The goal of RFA is to in-
duce a temperature of 50-1,008°C throughout the tumor [53]. RFA
can be performed open, laparoscopically, or percutaneously. Can-
didates include those with small, contrast enhancing, solid renal
masses less than 4 cm which are located at some distance from the
ureteropelvic junction, the renal hilar vessels, and preferably not
involving the pelvicalyceal system [5]. Tumor location is the most
important determinant of the surgical approach. Laparoscopic RFA
has the advantage of probe insertion under direct vision, avoiding
adjacent organ damage. The percutaneous approach is preferred
for posterior tumors, is well tolerated, and can be performed under
sedation, potentially on an outpatient basis. The RFA probe can be
inserted under ultrasound, CT, or MRI guidance. Ukimura et al. re-
ported the use of real-time virtual ultrasonography (RVS, Hitachi
Medical Corporation, Japan) as a navigational tool for percutane-
ous RFA in 10 patients [55]. The mean (range) tumor diameter was
2.8 (1.0-4) cm. All tumors were visualized on CT/RVS and precise
imaging was possible. Carey and Leveillee described the use of non-
conducting temperature probes independent of the RFA electrode
in order to achieve real-time temperature monitoring of the abla-
tion zone [56]. The ablation was continued until all of the periph-
eral temperature monitors registered 60°C for at least 15 s. In the
36 patients treated (37 tumors) with an average follow-up of 11.3
months (1-44), the re-treatment rate was 8.1%. Two major compli-
cations occurred, ureteropelvic junction obstruction and delayed
hemorrhage. Park et al. reported 94.8% cancer-specific survival for
small tumors (mean size 2.4 cm), with a mean follow-up of 19.5
months [57]. They also reported 94 tumors in 78 patients (mean

Fig. 2. Parenchymal reconstruction using clipped sutures and fibrin glue.

size 2.4 cm). Over a mean follow-up period of 25 months, recur-
rence-free survival was 96.8%, cancer specific survival was 98.5%,
and overall survival was 92.3%.

Cryoablation: The pathophysiology of the cryolesion begins as
the extracellular space freezes and osmolarity increases leading an
efflux of intracellular fluid into the extracellular compartment [58].
The initial damage to the cells is due to the hypertonic intracel-
lular solute, changes in pH, and protein denaturation. Extracellular
ice formation also causes mechanical disruption of the cell mem-
branes. With further cooling, ice crystals may form within the cell.
Delayed tissue injury occurs within hours and days after cryoabla-
tions, due to microvascular injury, diminished tissue perfusion, and
delayed cell death [59]. To perform cryoablation, liquid argon is cur-
rently the most commonly used cryogen. A slow, passive thaw may
be more effective than a rapid and active thaw. Two freeze-thaw
cycles have been shown to produce a larger area of necrosis in an
animal model when compared with a single cycle and remains our
current preference [60]. Animal models demonstrate that a tem-
perature of -19.4°C or less results in complete cell death [61]. In
clinical protocols, the target temperature is approximately -40°C
with extent of the ice ball at least 0.5 cm beyond the target lesion.
Ability to perform intraoperative ultrasound monitoring of the ice
ball is one advantage of cryoablation over RFA.

Percutaneous approach:The advantages of a percutaneous ap-
proach, apart from being less invasive, include shorter hospitali-
zation, excellent ice-ball monitoring with cross-sectional imaging
(MRI or CT), decreased pain medication requirement, and cost-
effectiveness over the laparoscopic approach [62]. Percutaneous
renal cryoablation is currently performed with the use of CT scan
guidance, open gantry MRI or ultrasound [63]. Percutaneous abla-
tion is typically reserved for posterior tumors.

Single-port approach: Goel and Kaouk reported single-port
laparoscopic renal cryoablation in four patients [64]. They used
a single port with multichannel access (Uni-X Single Port Access
Laparoscopic System, Pnavel Systems, Morganville, New Jersey,
USA) and specially designed curved laparoscopic instruments. For
the retroperitoneal approach, the multichannel port was inserted at
the tip of the 12" rib using an open Hasson technique and for the
transperitoneal approach it was inserted through a 1.5-cm semicir-
cular incision at the inner edge of the umbilicus. After exposing the
tumor, intraoperative biopsy was performed, and a 3.8-mm cryo-
probe (Endocare, Irvine, California, USA) was inserted under ultra-
sound guidance. All the procedures were successfully completed.
No intraoperative complications developed. This approach might
allow laparoscopic cryoablation procedures to be performed en-
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tirely through the patient's umbilicus and enable essentially scar-
less abdominal surgery with additional reduced wound morbidity.

Radiosurgery: Radiation induces single-stranded and double-
stranded DNA breaks, which causes apoptosis and prevents suc-
cessful cell division. If the dose of radiation is high enough, direct
necrosis is achieved. Ponsky et al. reported three patients with a
renal tumor of 4 cm or less, candidates for surgical treatment who
underwent radiosurgery followed by a partial nephrectomy after
8 weeks [65]. Before the procedures, the patients underwent a CT
scan with percutaneous placement of image guidance markers in
or near the tumor under local anesthesia. The patients received a
total of 16 Gy in four fractions delivered over 2 days. At 8 weeks
after radiosurgical treatment, a preoperative CT scan was obtained,
and the patient underwent surgery (partial or radical nephrectomy).
Mean follow-up was 56 weeks (52-62 weeks); no acute toxicities
and no changes in renal function were noted. The initial two pa-
tients had histologically demonstrated viable tumor remnants. No
viable tumor was seen in the last patient. There was no change in
the tumor size after 8 weeks. By dividing the radiation dose into
multiple separate individual beams, radiosurgical technology can
deliver high-focal doses of radiation necessary to ablate a lesion
completely, without increasing collateral damage. By incorporating
respiratory gating, stereotactic radiosurgery can now be delivered
to the kidney in real time. The ablative radiation dose remains to be
determined, and the correlation between the pathologic findings
and the CT scan is essential for appropriate evaluation and confir-
mation of tumor destruction.

CONCLUSIONS

Excision still is the reference standard for the treatment of
small renal masses. Five-year oncological and functional outcomes
of LPN are encouraging and similar to open surgery. LPN is techni-
cally challenging, but has been shown to achieve similar interme-
diate-term cancer cure and renal function results in centers with
advanced laparoscopic expertise. Larger series with longer follow-
up and prospective randomized studies are needed to confirm the
safety and efficacy of LPN. Robotic technology is likely to enhance
the diffusion of LPN since it speeds up the learning curve. However,
financial limitations may be the major problem.

Cryoablation is the most studied among the ablative tech-
niques so far. Preliminary data indicate that this modality could be
the preferred option for small renal tumors not suitable for LPN.
Radiosurgery is a promising new technology, but further studies
are needed to address its oncological and functional results.
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